翻訳と辞書
Words near each other
・ Lagrange number
・ Lagrange Peak
・ Lagrange Point (video game)
・ Lagrange point colonization
・ Lagrange polynomial
・ Lagrange Prize
・ Lagrange reversion theorem
・ Lagrange stability
・ LaGrange Township
・ Lagrange Township, Bond County, Illinois
・ LaGrange Township, Lorain County, Ohio
・ LaGrange Township, Michigan
・ Lagrange's formula
・ Lagrange's four-square theorem
・ Lagrange's identity
Lagrange's identity (boundary value problem)
・ Lagrange's identity (disambiguation)
・ Lagrange's theorem
・ Lagrange's theorem (group theory)
・ Lagrange's theorem (number theory)
・ LaGrange, Arkansas
・ Lagrange, Euler and Kovalevskaya tops
・ LaGrange, Georgia
・ Lagrange, Hautes-Pyrénées
・ LaGrange, Indiana
・ Lagrange, Landes
・ Lagrange, Maine
・ LaGrange, New York
・ LaGrange, Ohio
・ Lagrange, Territoire de Belfort


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lagrange's identity (boundary value problem) : ウィキペディア英語版
Lagrange's identity (boundary value problem)

In the study of ordinary differential equations and their associated boundary value problems, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator. Lagrange's identity is fundamental in Sturm–Liouville theory. In more than one independent variable, Lagrange's identity is generalized by Green's second identity.
==Statement==
In general terms, Lagrange's identity for any pair of functions ''u'' and ''v''  in function space ''C''2 (that is, twice differentiable) in ''n'' dimensions is:〔

:vL()-uL^
*()=\nabla \cdot \boldsymbol M, \
where:
:M_i = \sum_^n a_\left(
v \frac -u \frac
\right ) + uv \left(
b_i - \sum_^ \frac \right ),
and
:\nabla \cdot \boldsymbol M = \sum_^n \frac M_i,
The operator ''L'' and its adjoint operator ''L''
*
are given by:
:L() = \sum_^n a_ \frac + \sum_^n b_i \frac +c u
and
:L^
*() = \sum_^n \frac - \sum_^n \frac + cv. \,
If Lagrange's identity is integrated over a bounded region, then the divergence theorem can be used to form Green's second identity in the form:
:\int_\Omega v L()\ d\Omega = \int_ u L^
*()\ d\Omega +\int_S \boldsymbol \, dS,
where ''S'' is the surface bounding the volume ''Ω'' and ''n'' is the unit outward normal to the surface ''S''.
===Ordinary differential equations===
Any second order ordinary differential equation of the form:
:a(x)\frac + b(x)\frac +c(x)y +\lambda w(x) y =0,
can be put in the form:〔

:\frac \left( p(x) \frac \right ) +\left( q(x)+ \lambda w(x) \right) y(x) = 0.
This general form motivates introduction of the Sturm–Liouville operator ''L'', defined as an operation upon a function ''f '' such that:
:L f = \frac \left( p(x) \frac \right) + q(x) f.
It can be shown that for any ''u'' and ''v'' for which the various derivatives exist, Lagrange's identity for ordinary differential equations holds:〔
: uLv - vLu = - \frac \left(p(x) \left(v\frac -u \frac \right ) \right ).
For ordinary differential equations defined in the interval (1 ), Lagrange's identity can be integrated to obtain an integral form (also known as Green's formula):〔
〕〔
〕〔

:\int_0^1 \ dx \ ( uLv-vLu) = \left(\frac - v \frac \right)\right )_0^1,
where \ p=P(x), \ q=Q(x), \ u=U(x) and \ v=V(x) are functions of \ x. \ u and \ v having continuous second derivatives on the

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lagrange's identity (boundary value problem)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.